Bayesian Finite Mixtures for Nonlinear Modeling of Educational Data
نویسندگان
چکیده
In this paper we discuss a Bayesian approach for nding latent classes in the data. In our approach we use nite mixture models to describe the underlying structure in the data, and demonstrate that the possibility to use full joint probability models raises interesting new prospects for exploratory data analysis. The concepts and methods discussed are illustrated with a case study using a data set from a recent educational study. The Bayesian classiication approach described has been implemented , and presents an appealing addition to the standard toolbox for exploratory data analysis of educational data.
منابع مشابه
Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملBlind separation of nonlinear mixtures by variational Bayesian learning
Blind separation of sources from nonlinear mixtures is a challenging and often ill-posed problem. We present three methods for solving this problem: an improved nonlinear factor analysis (NFA) method using a multilayer perceptron (MLP) network to model the nonlinearity, a hierarchical NFA (HNFA) method suitable for larger problems and a post-nonlinear NFA (PNFA) method for more restricted post-...
متن کاملThe Population Posterior and Bayesian Modeling on Streams
Many modern data analysis problems involve inferences from streaming data. However, streaming data is not easily amenable to the standard probabilistic modeling approaches, which require conditioning on finite data. We develop population variational Bayes, a new approach for using Bayesian modeling to analyze streams of data. It approximates a new type of distribution, the population posterior,...
متن کاملTitle of the ESTIMATION AND MODEL SELECTION FOR Dissertation FINITE MIXTURES OF LATENT INTERACTION MODELS
Title of the ESTIMATION AND MODEL SELECTION FOR Dissertation FINITE MIXTURES OF LATENT INTERACTION MODELS Jui-Chen Hsu, Doctor of Philosophy, 2011 Directed by Professor Gregory R. Hancock, Department of Measurement, Statistics and Evaluation Professor Jeffrey R. Harring, Department of Measurement, Statistics and Evaluation Latent interaction models and mixture models have received considerable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997